CatsTail: Packet programs synthesis via Equality Saturation

DEYUAN MIKE HE, Princeton University, USA
YINWEI DAL, Princeton University, USA

The limited on-chip resources bring several challenges to compiling switch programs onto target hardware,
which makes it difficult for switch users to run and test their programs. Previous works attempted to formulate
the compilation problem as program synthesis problems and synthesize code that can be mapped to target
hardware by querying synthesis oracles. To generate programs that minimize stage allocation, the synthesis
oracle is invoked multiple times, which drastically slows down the compilation speed. Because of this, real-
time debugging on real hardware is nearly impossible. In this project, we propose CATSTAIL, an equality
saturation-based resource synthesizer for P4 programs that achieves orders of magnitude compilation speed up
compared with previous works. CATSTAIL utilizes a data structure called e-graphs, which represents equivalent
representations of programs, and encodes program transformations as syntactic rewrite rules. In addition
to general-purpose program transformations, CATSTAIL also introduces a set of target-dependent rewrite
rules that match certain computation patterns and generate programs that are directly mappable to target
architectures.

1 INTRODUCTION

Mapping switch programs to programmable switches has been extensively studied since the
emergence of reconfigurable switches [Bosshart et al. 2013] and programming languages targeting
their models [Bosshart et al. 2014; Gao et al. 2020]. The major challenge of mapping user-defined
programs to programmable switches is due to the limited computing resources: the vanilla input
program may require more stages than the hardware provides because of the table dependencies or
a giant match table may not fit into one physical stage.

A previous work, CaT [Gao et al. 2023], proposes to use sketch-guided synthesis (SKETCH) [Solar-
Lezama 2008] to generate a min-depth program to reduce stage usage. CaT first performs some
generic program transformations and then queries SKETCH with grammars of computations that
are supported by the target architecture. However, SKETCH requires massive parallelism and
hardly scales if the computation is complicated because it has to search through a large space of
candidates with the majority that are trivially incorrect (e.g. incorrect constants). According to the
evaluation of CaT, the resource synthesizer takes over 1,000 seconds to generate a valid result for
a simple program (e.g. stateful firewall). This fundamental drawback of SKETCH is because the
synthesizer only utilizes the semantics of the input program without considering its structure to
guide synthesis.

In this project, we introduce CATSTAIL, a resource synthesizer based on a novel technique
from the programming languages community called equality saturation (EqSat) [Tate et al. 2009].
Informally, equality saturation takes an initial program and a set of syntactic rewrite rules that
preserve program semantics as inputs. Then EqSat applies the rewrite rules to the initial program
while memorizing semantically equivalent programs modulo rewrites. EqSat terminates when it
hits a time limit, or the space of programs equivalent to the initial input program has been fully
explored. The workflow of CATsTAIL is shown in Figure 1.

CATsTaIL takes a P4 program as input. In the first step, CaTsTAIL applies If-then-else (ITE)
transformation (§ 3.1) by symbolic execution and compiles the P4 programs to a dataflow-based
intermediate representation (IR) called Mio IR. Then, CATSTAIL runs equality saturation using egg on
the program in Mio IR with 3 sets of rewrite rules: (1) general-purpose program transformations, (2)
table transformations, and (3) target-dependent synthesis rules (§3.3). Finally, after EqSat terminates

Authors’ addresses: Deyuan Mike He, Department of Computer Science, Princeton University, USA, dh7120@cs.princeton.
edu; Yinwei Dai, Department of Computer Science, Princeton University, USA, yinweid@cs.princeton.edu.

, Vol. 1, No. 1, Article . Publication date: December 2023.

2 Deyuan Mike He and Yinwei Dai

Frontend Transformations Equality Saturation Synthesis Extraction

ITE Transformations

Mindepthmin- b,
cost extraction Valid program P
C(P) <
C:Mio + N — (
Invalid program P
C(P) =00

Rewrite Rules

transformations | transformations mapping rules

Algebesic) Conditional lifting Domino Stateful
simlifications
Domino Stateless
Predicate Werging &
identities Parallelization
Tofino Stateful

Arithmetic f-then-else lifting Tofino Stateless

Fig. 1. The workflow of CATSTAIL synthesizer

(or timeout), the e-graph will be populated with many candidate programs, and we have to choose
one candidate out of the entire space. Therefore, we implement a target-aware synthesis extraction
(§ 3.4) which encodes minimum computation tree depth as the cost function.
The rest of this report is arranged as follows:

o § 2 briefly goes through the background of equality saturation and egg.

e § 3 explains the design of CATSTAIL in detail

e § 4 shows the proof of completeness of the target-dependent synthesis rules

e § 5 discusses the evaluation of CATsTAIL, including the performance improvement comparing

CarsTaiL with SKETCH

2 BACKGROUND
2.1 Equality Saturation

Traditional term rewriting system applies the rewrite rules one at a time and forgets the original
term. These term rewriting systems are sensitive to the order in which rewrite rules are applied
because some rewrite rules can disable opportunities to run some other rewrite rules. This is
a well-known problem called the Phase ordering problem in the compiler community. Equality
saturation [Tate et al. 2009] (EqSat) is a technique to mitigate this problem. Instead of running
the rewrite rules destructively, EqSat applies the rewrites iteratively and keeps both the original
term and the new term. EqSat utilizes a data structure called e-graph [Nelson and Oppen 1980] that
maximizes sharing among sub-expressions to represent the set of equivalent terms efficiently.

2.1.1 e-graphs. E-graphs are made up of e-classes and e-nodes that represent some terms.

e Terms. A term ¢ can be a literal, a symbol, or a function application f(¥) where xy, X, . . ., Xy,
are also terms.

e E-classes. e-classes are sets of e-nodes. An e-class C represents a term ¢ if there is an e-node
in C that represents ¢.

o E-nodes. e-nodes represent terms. If an e-node n represents a literal or a symbol, then n does
not have children and n is the literal or the symbol; otherwise, n represents a term f(X). In
this case, n is f and each child C; of n is an e-class that represents the term x;.

2.1.2 Syntactic Rewrite. Rewrite rules for terms represented in e-graphs are defined in the form of
a left-hand-side pattern (LHS) and a right-hand-side pattern (RHS): p = ¢, denoting matching on

, Vol. 1, No. 1, Article . Publication date: December 2023.

CATSTAIL 3

/ X
x « /
_____ P
ali 2 S

Fig. 2. An example e-graph borrowed from [Willsey et al. 2021]. The first e-graph contains the original
input term. The second e-graphs shows the result of applying ?a X 2 = ?a << 1. The third e-graph shows
the result of applying ?a X ?f/?n = ?a X (?/?n). Finally, the last e-graph shows the result of applying
2ax B/ = 2 and 2a/?a = 1.

p and then instantiating a new term q. LHS and RHS can be terms that contain pattern variables,
which stands for wildcard pattern matching. For example, the rewrite rule 2a X 2 = ?a << 1
contains a pattern variable ?«. It matches any term where the operator is X and the right-hand-side
operand is 2 and then instantiates a new term where the operator is << with the same operands.
The instantiated e-node representing ?a << 1 will be placed in the same e-class as the e-node
representing ?a X 2. The multiplication-to-shifting rule is a standard optimization in modern
compilers. However, it can disable the rule ?a X ?/? = ?« in traditional term rewriting systems
(e.g. apply multiplication-to-shift on x X 2/2). On the other hand, EqSat does not face this problem
because it remembers both the original and the new term. Figure 2 shows an example of running
EqSat on the expression a X 2/2 with the above rules and two additional properties of multiplication
and division: ?a X ?4/?n = 2a X (?/?n) and ?a/?a = 1.

2.2 the egg framework

egg [Willsey et al. 2021] is an EqSat framework that supports defining domain-specific languages
(DSLs) and rewrite rules of the DSLs. In addition to standard EqSat utilities, egg extends the e-classes
with e-class analysis, a customizable auxiliary data to express static analysis information on terms
represented by the e-class. E-class analysis is similar to abstract interpretation [Cousot and Cousot
1977] on e-graphs and enables conditional rewrite rules. For example, § 2.1.2 mentioned the rewrite
rule ?a/?a = 1, which is unsound when ?a is matched to 0. Using egg, we can additionally attach
e-class analyses that represent whether the terms in the e-class are semantically equivalent to 0
and check the analysis data before triggering the rewrite rule. The augmented conditional rewrite
rule can be defined as ?a/?a = 1 if ?2a # 0.

3 CATSTAIL SYNTHESIZER

CatsTaIL synthesis pipeline has 3 stages. First, CATSTAIL takes in a P4 program as input and
performs some frontend transformations to convert it into the representation we designed for
EqSat, Mio IR. Then CATsTAIL creates the initial e-graph that contains the input program in Mio IR
and invokes interfaces provided by egg [Willsey et al. 2021] to run EqSat. We designed 3 sets of
rewrite rules to maximize the opportunity mapping computations to the target switch architecture

(§ 3.3):

RR 1 General-purpose transformations encapsulate properties of arithmetic operators, algebraic
simplifications, predicate logic formula identities, etc.
RR 2 Table transformations encode table splitting (when necessary), parallelization, and merging.

, Vol. 1, No. 1, Article . Publication date: December 2023.

4 Deyuan Mike He and Yinwei Dai

Program P:=B"

Block B:=S5|8Seq(S,S)

Stmt S := Assign(V, E) | If(E, B, B)

Expr E=E+E|E-E| —-E]| ...

Literals Vi=x1,%x,...|1,23,... | true | false

Fig. 4. Syntax of table actions in P4 programs

RR 3 Target-dependent synthesis rules match against target-supported computations derived from
arithmetic logic unit (ALU) grammars (§ 3.3) and instantiate terms of invocations to corre-
sponding ALU operators.

After running EqSat (terminates or timeout), CATSTAIL uses a min-depth cost model C# to select a
candidate program for target architecture A. The cost of a term ¢ given by C is the tree depth of ¢
if t is a mappable computation (Figure 7a) to A; otherwise, C will assign an co cost to t. CATSTAIL
employs the greedy extractor provided by egg [Willsey et al. 2021] to minimize the cost of the
extracted candidate program. If the extracted program 7 satisfies that C#(7) < oo, then 7 is
mappable to A, and C#(7") gives the number of stages 7 will take on A. If C#(7") = oo, then
there exists some computation in 7~ that is mappable to A. The latter case is attributed to the
incompleteness of RR 1 and RR 2 (§ 4.2), and in § 4, we prove that RR 3 is complete.

3.1 Frontend Transformations

P4 programs are written in an imperative language, whereas EqSat in egg [Willsey et al. 2021]
requires a dataflow-based representation. Therefore, in the frontend transformation stage, CATSTAIL
converts the P4 program, specifically actions of tables defined in the P4 program, into dataflow-based
representation.

. fith
Algorithm 1 Example program I*={x > ite(fi = f 2 0, 5 (fi+f2) x2);
procedure FuNc(fi, f>) y fi—fo}
x—fi+th ={x T;y> T}
y—h-£
if y > 0 then .
e X After running SymEx on FuNc shown on the left
else 2 side, we obtain T'* and 3* above. Then, the pro-
X x X2 gram in Mio IR can be constructed from I'*. Note
end if that =* at the end of SymEx will always be T.

end procedure

Fig. 3. An example of the result of SymEx on FuNc (on the left). The resulting I'* and 3* are shown on the
right.

We implement the ITE transformation using symbolic execution (SymEx) over table actions. Each
table action is a loop-free code block with branching, which can be captured by the syntax in
Figure 4. SymEx recursively evaluates the program with symbolic inputs. SymEx takes 4 arguments
as inputs: P, the input table action described in the syntax shown in Figure 4, I" a variable-to-value

, Vol. 1, No. 1, Article . Publication date: December 2023.

CATSTAIL 5

EVAL-SEQ EVAL-ASSIGN
S1 S2
I,3 =k 15,3 I, 3 = 13,33

Seq(s1,52) r, 3 Ao, [0+ suBsT(e, T, 2)]T, [0 > k]2
0,2 — 13,35 ’ K e ’
EVAL-IF
DRSS VD S WD SR YN0
I =dom(Iy,) Nndom(Iy,) J =dom(Ty,)\ I K =dom(I;,) \ T
L={v|vel A3 () #Z(0)} I = {o > GeN-1TE(0, ¢, I5,, T,) | v € L}

I = {v > GEN-1TE(0, ¢, I§,,T) | v € T} F3* = {0 > GEN-ITE(0, 7, T,,, T') | v € K}
Sf={o—k|lve LUJT UK} >y ={o—3)|vel\L}
if(c,s1,82)

[,y — 5, JULFUL;U{o—=T()|vel \LLETUS)

Fig. 5. Semantics of the SymEx over P4 table actions where GEN-ITE(v, ¢, T}, [3) LN ite(c, T1(v), T2 (v)) and
suBsT(e, I,2) &ef REDUCE(Aev.[GEN-ITE(0, 2(v), T, 1D) /v]e, e, dom(T))

mapping, X a variable-to-path-condition mapping and the current path condition x. Figure 3 shows
an example of running SymEx over a simple imperative program with conditional.

I" keeps track of the most up-to-date value of each variable defined in and ¥ maintains a guard
for each variable, denoting the condition of assigning a variable v to the value I'(v). The outputs of
SymEx are updated mappings I'* and Z* after executing # under the path condition .

When evaluating an If(c, s1, s2) statement, SymEx evaluates both s; and s; with path conditions ¢
and —c respectively. Then, SymEx constructs the merged mappings using the outputs from executing
s1 and s;. Suppose the output from executing s; and s; are Iy, 2, and I, 2, respectively. The
merging is based on whether a variable v is changed in both branches. If both s; and s; assign some
value to v, then v appears in dom(I,) N dom(Iy,) but X5, (v) # X5, (v). In this case, a conditional
assignment ite(c, Iy, (v), Is, (v)) is constructed for v. If v is modified in one of s; and s;, then the
conditional assignment will only consider the path condition for the branch that alters the value of
v. By the formal semantics of the symbolic executor shown in Figure 5, the evaluation of SymEx

g)
over an input program P is @, @ —+ I'*, 3*. The full procedure is shown in the Appendix (§ 7)
Algorithm 3.

3.2 Generic Table Representation: Mio IR

The frontend transformation converts control flows from the input P4 programs into purely data
flow-based representation, but it only works on the level of table actions. The remaining “controls”
are from the order of table applications. To separate table controls from computations performed
by each table, we designed a representation called Mio IR to encapsulate P4 programs after ITE
transformation. Mio IR uses a sea-of-nodes [Click and Paleczny 1995] representation. An example of
aMio IR program is shown in Figure 6. The program represents a table that matches kq, k», k3 and
have 2 actions A; and A, where A; assigns v; to 1+ 2 + f; and A; sets v, to 2. In the figure, green
nodes are compute nodes and orange nodes are table control nodes. Nodes with E operators are
elaborators. The elaborator nodes set boundaries between compute nodes and control nodes, which
makes the representation suitable for EqSat. The specific benefits of posing elaborators between
table control nodes and compute nodes will be discussed later in § 3.3. Other table control nodes
are: table sequencing Sequence(71, 7;) and table parallelization Join(7, 7z). The former stands
for placing 771 before 7;, which enforces a strict topological order of table application. The latter
indicates two tables can be arranged into the same logical stage.

, Vol. 1, No. 1, Article . Publication date: December 2023.

6 Deyuan Mike He and Yinwei Dai

T

/ N\

Keys Actions

LN — T

Fig. 6. A table represented in Mio IR that has 3 match keys (k1, k2, k3) and 2 actions A1 and Aj.

Mio IR is defined using interfaces provided by egg [Willsey et al. 2021] and thus can be directly
converted to an e-graph representation for subsequent EqSat procedure.

3.3 Equality Saturation on Mio IR

Given an initial e-graph G, we design 3 sets of rewrite rules for synthesis.

General-purpose Transformations. To explore the space of equivalent programs, we encode a
set of rules that captures basic arithmetic properties, such as commutativity and associativity of
addition, predicate logic formula identities such as De Morgan law, and properties of conditional
assignments.

Example 3.1. The following are simple examples of rewrite rules that perform algebraic simplifi-
cation, De Morgan’s law, and if-then-else identity. «~» stands for bi-directional rewrite.

ALG-SIMP DE-MORGAN ITE-IDENT
I't+a:INT I+ a:BOOL I'+ f:BOOL I+ c:BOOL
a+0~~wa =(a A f) e (ma) V (=) ite(c, ey, e2) e ite(—c, ea, €1)

Elaborators are boundaries between compute and table control nodes and take care of the effects
of each table action. Therefore, rules that work with pure computations do not need to maintain the
effects brought by table controls. For instance, in Figure 6, the effect of A; is assigning a value to v;.
Since the elaborator separates the effect from the value assigned to vy, rewrite rules that match on
pure computations need not know which variable the matched expression is assigned to. Any term
represented by the child e-class of the elaborator are valid candidate values assigned to v;.

These rules are also composable with each other to perform some term rewriting-based compiler
optimizations such as constant folding and the example illustrated earlier in § 2.1.2. The full set of
General-purpose rewrite rules is in § 8.1.

Table Transformations. The program after ITE transformation applies tables in a topological
order that respects the table dependency of the original program. However, the order might not be
the most preferred. For example, suppose a table 77 is placed before another table 7; because SymEx
sees 71 before seeing 7;. However, there is no read and write dependency between 77 and 7;. In
this case, if the memory limit permits, 7; and 7; can be placed in the same stage. To have a diverse
set of candidate programs, we design a set of rewrite rules that (a) alter the table application order;

, Vol. 1, No. 1, Article . Publication date: December 2023.

CATSTAIL 7

(b) decompose computations in table actions and span them across stages. The purpose of (b) is to
transform computations in candidate programs into preferred shapes that can potentially match the
target ALU grammar. For instance, suppose on some switch architecture, the ALU that performs
conditional assignment can only compute a single binary predicate (¢ A f or @ V). Suppose
there is a computation in some action that requires computing ite(a A § A 1, e1, e2). The predicate
computes A with 3 inputs, so no matter how the expression is transformed, the computation can
never match with the ALU grammar. In this case, the table transformation rewrite rule will “lift”
the computation of & A f§ to some previous stage, and make a new packet header vector (PHV)
field f,1p and instantiates a new conditional assignment ite(fonp A 7, €1, €2) in some later stage.
After this transformation, the computation matches the ALU grammar and can be captured by the
target-dependent synthesis rule (discussed below) to instantiate invocations to ALU operators.

Target-dependent Synthesis Rules. Supported computations are different across targets. Therefore,
for each backend target, we design a set of synthesis rules that are derived from the grammars of
supported computations of the target ALU. The LHS pattern of these synthesis rules are shapes of
computations that are supported by the target switch ALU. As an axiom, PHV fields (variables)
and constants are always considered supported. Computations that take any output from other
computations can be matched with LHS if all the arguments of the computation have already
been mapped to some ALU operator invocations. For instance, suppose some ALU supports binary
addition. Then, the corresponding rewrite rule is

ADD(?x, ?y) = ALU-ADD(?x, ?y) if (1S-MAPPED(?x) A IS-MAPPED(?y))

The full set of these rewrite rules can be found in Appendix 8.2. The formal definition of “mappable
computations”, “mapped computations” will be discussed in detail in § 4.

3.4 Extraction with Target-aware Cost Models

EqSat populates the e-graph with program representations equivalent to the original input program
modulo RR 1~RR 3 discussed in the earlier sections. We employ a cost-based architecture-aware
extraction to select one candidate program from the (sub)-space EqSat explores. There are 2
objectives of extraction. First, because the rewrite rules do not guarantee the existence of a candidate
program that can be compiled to the target switch, any computations that have not been converted
to ALU operator invocations have to be filtered. Second, the number of stages required by the
extracted candidate is minimized. The two objectives are encapsulated by a cost function C#(7")

Algorithm 2 Target-aware cost function

procedure C#(7)
if Var(v) =7 V Const(c) = 7 then
return 0
else
) «7T
if =MAPPED(A, f) then
return oo > unsupported computation
end if
ce < REDUCE-MAX(Ae;.C(e;), €)
returnc, +1
end if
end procedure

, Vol. 1, No. 1, Article . Publication date: December 2023.

8 Deyuan Mike He and Yinwei Dai

(Algorithm 2) that takes in a term 7 in Mio IR as input. If 7 is a PHV field or a constant, we assign
a cost of 0. On the other hand, it must be some computation in the form of a function call f(€). In
this case, C# first checks if 7 has already been converted to some ALU operator invocations by
the target-dependent synthesis rules. If it is not in the form of an ALU operator, then an oo cost is
assigned. Otherwise, C# computes the tree depth of 7.

Given the e-graph G after EqSat, the objective function of the extraction problem is

argmin C#(7")
Teg
In other words, we try to minimize the depth of the 7°, which is equivalent to the number of
stages required for mapping 7 to the target A. Solving the optimal 7~ is hard because C#(-) is not
continuous and |G|, the number of terms represented by G, can be doubly-exponentially many,
which makes the extraction problem NP-Hard. Therefore, we use the greedy extractor interface
provided by egg to approximate the optimal 7. The result in our evaluation (§ 5) shows that the
greedy extractor gives good approximations.

4 COMPLETENESS OF REWRITE RULES

An important property of the synthesis rewrite rules is completeness: if a computation is supported
by the ALU on the target platform, then the rewrite rules will instantiate the corresponding ALU
operators that do the same computation. We prove that the target-dependent synthesis rules we
defined are complete.

4.1 Completeness of Target-dependent synthesis rules

First, we define (formally) ALU operation mappings, the notion of mappable computations and
mapped computations.

Definition 4.1. (ALU Operation Mapping) Define the ALU operation mapping to be A(-), where
dom(A) is a set of atomic computations supported by the ALU, which are arithmetic corresponding
to ALU-Ops in Figure 7b and Im(A) are the corresponding ALU operators. A can be computed from
an input ALU grammar. In this proof, we consider an abstract ALU grammar defined in Figure 7b.

Definition 4.2. (Mapped Computations) A computation e is mapped to ALU operations provided
by an ALU operation mapping A, denoted by A [= e, is defined as

feIm(A)

Var(v) Const(c) Vie[n].AEe

MAPPED-VAR MAPPED-CONST ———— MAPPED-IND —————————
Ao N A f(e)

Mapped computations are inductively defined. PHV fields and constants are always considered
mapped. For any computations f that takes in other values as arguments, the computation f is
mapped if f is in the image of the target ALU operation mapping (f is an ALU operator) and all
the arguments it reads from outputs of some mapped computations.

Running equality saturation with general-purpose transformations and table transformations
explores the space of computations equivalent to the initial input program. However, the computa-
tion capability of ALUs on the target platform is limited and only arithmetic operations in certain
forms can be computed. In CaT [Gao et al. 2023], the supported computations are captured using
ALU grammars as defined in Figure 7b. Given the ALU grammar, we define a set of rewrite rules
that satisfy the properties below.

, Vol. 1, No. 1, Article . Publication date: December 2023.

CATSTAIL
Var(v) Const(c) -
MAP-VAR Map-CONST ——— ALU E:=F(E)|L
Aro Arc ALU-OpS F:::ﬁsﬁaﬁs-~-
f € dom(A) Vie[n].AF e Var-Const L:=1,23,...|x,%x2...
Mar-Comp
At f(€1, aen) (b) Stateless ALU Grammar

(a) Inference rule for mappable computations

Fig. 7. Mappable computations and ALU grammar

Ji. ej ~op €]

f(€) ~, fler....€f,...en)

f € dom(A) Vie[n].AEe *=A(f)
fler,....en) »o f*(er,....en)

RR-PrOGRESS-E and RR-PROGREsS-F constrain the rewrite rules such that the call to the correspond-
ing ALU operator f* will be instantiated if all the arguments to f have been mapped under A by

the rewrite rule.

RR-PROGRESS-E

RR-PROGRESS-F

Definition 4.3. (Mappable computations) Given an ALU operation mapping A and some compu-
tation e, let A + e be the judgment that e is mappable given A. The derivation of the judgment is

formally defined in Figure 7a.
Similar to Definition 4.2, mappable computations are also inductively defined. A computation

f is mappable if f is mapped to some ALU operator by A and all of its arguments are mappable.
To be clearer about the terminologies used in the proof, the following are equivalences between

judgments and statements.
(1) A+ K < %K only contains constants, PHV fields and arithmetic operators in dom(A).
(2) A E K < % only contains constants, PHV fields and ALU operators in Im(A).

Definition 4.4. Let ~» be the reflexive transitive closure of ~», defined as

* *
~» 7 -REFL A7 -TR
€] Wﬁ € €2 W €3

e~ e e1 ~oy €3

LEMMA 4.5. For all terms e;, e] where i € [n], ife; ~»; e}, then
F(€) s fler,....ef,....en)

Proor. By structural induction on the derivation of e; v} e;

e ~»> REFL. In this case ¢; = e and by w»;REFL we have f(€) ~» f(€)
e ~»ITR. In this case, there is an € such that e¢; w} € and € ~, ¢’. By the induction hy-

pothesis, we have f(e; ...,e;,...,ey) ~r f(er,...,6...,en). Letw = (er,...,6...,e,). We
have an i such that w; ~», ¢’ where w; = e. Then, by RR-PROGREsS-E we have f(w) s,
f(er,...,€,...,ey). Finally, by ~*-TR, we have f(e; ...,€j,...,en) wo} f(er,....e/,...,en)

, Vol. 1, No. 1, Article . Publication date: December 2023.

10 Deyuan Mike He and Yinwei Dai

]

Finally, we prove the completeness theorem for rules that satisfy RR-PROGREss-E and RR-
PROGRESS-F.

THEOREM 4.6. (Completeness of Synthesis Rewrite) Let ~>} be the reflexive transitive closure of ~»,.
Given an ALU grammar with the associated ALU operation mapping A and some computation e, if
A+ e, thende*. e wf e* AN E e*

Proor. By structural induction on the premise A + e

e MAP-VAR. In this case e = v for some variable v. Let e* be v. By reflexivity of ~»}, we have
v % 0. Then by MAPPED-VAR, A | e*

® MAP-CONST. Similar to the previous case.

® MAP-COMP. In this case e = f(ey,...,e,).We have f € dom(A) and Vi € [n]. A + e;. By
induction hypothesis, we have that for any i € [n], there exists some e* such that e; ~; e}
and A [e} Since A is well-defined at f, let f* = A(f). Then, by case analysis on e; w»; e

(1) Suppose all such cases are by v, -REFL. Subsequently, we have Vi.e; = e} and f(ey, .. ., e,)
f(ef,...,e;) by w7 -REFL. By RR-PROGRESS-F, we have f(ef,...,e5) ~, f*(ef,...,e}).
By ~i-TR, f(e,...en) ~y f*(ef,...,ey;). Since f* € Im(A) and Vi € [n]. A | ef, by
MapPED-IND we have A | f* (e}, ..., e)).

(2) Suppose there are some i € S C [n] such that ¢; w7 e/ and e] >, e/, and Vj ¢ S, e; v

e]’.‘ Aej = ej’.‘. WLOG, suppose S is a singleton set, otherwise, we can apply this proof
multiple times.

By Lemma 4.5, we have f(ey,...,e;,...,en) ») f(ef,...,e,...,e;). Then, by RR-PROGRESS-
Eande] . ef,wehave f(ef,....el,...,ey) w, f(ef,....el,..., ey). By ~-TR, we have
flew....ei....eq) w} f(ef,....ef,...,ey). Since f € dom(A), by RR-PROGRESss-F, we
have f(el,...,ef,....e5) ~ f*(ef,....ef,....ep). By w7 -TR, f(ey,...,€;...,4)

f*(ef,....ef ..., ey). Finally, since f* € Im(A) and Vi € [n]. A [e, we conclude that
AE f*(ef,....ef....ep)
[m}

4.2 Discussion

Soundness of rewrite rules. The rewrite rules provided to EqSat are axiomatized. This means if
there is an unsound rewrite (e.g. rewriting 1 to 0) then the entire procedure of EqSat can be unsound.
We have not formalized the rewrite rules we provided to EqSat, but it could be done by checking the
semantics equivalence using interactive proof assistants such as Coq [Bertot and Castéran 2013]
and Lean [Moura and Ullrich 2021]. The soundness can also be verified by automated theorem
proving using Z3 [De Moura and Bjerner 2008] or CVC5 [Barbosa et al. 2022].

(In)Completeness of General-purpose transformations and Table transformations. We have shown
that the target-dependent synthesis rules are complete (Theorem 4.6). But can we also show that the
other two sets of rewrite rules are also complete? In the context of general program transformations,
the definition of completeness is that the given set of rewrite rules are able to explore all possible
equivalent representations of the initial input program. The key to having a complete set is to
encode fundamental properties of the arithmetic operators (e.g. commutativity and associativity
of addition and multiplication), and general-purpose transformations are encoded using all the
available properties of computations that can be expressed in Mio IR. Checking the completeness
of these transformations is considered future work.

, Vol. 1, No. 1, Article . Publication date: December 2023.

CATSTAIL 1

5 IMPLEMENTATION AND EVALUATION

CarsTarlr is implemented with about 4900 lines of Rust code. The core dependency is egg [Willsey
et al. 2021]. The codebase is publicly available on GitHub!. The core language and frontend
transformations (§ 3.2) are implemented in language.rs. The rewrite rules (§ 3.3) are implemented
under rewrites directory. The greedy extractor (§ 3.4) is implemented in extractor.rs.

5.1 Evaluation and Experiments Setup

We address the following research questions (RQs):

RQ1: Resource synthesis speed. Can CATSTAIL be faster on synthesizing computations to target
switches compared to CaT [Gao et al. 2023]?

RQ2: Quality of extraction approximation. How good is CATSTAIL on approximating the optimal
computation on a target switch using the greedy extractor?

RQ3: Rewrite rules. How to improve the rewrite rules if the extractor cannot find a mappable
computation?

We evaluated CaTsTAIL with benchmarks provided by the artifact of CaT [Gao et al. 2023]
perform resource synthesis for Intel Tofino ALUs (A;) and Domino (Banzai) ALUs (Aj). The set
of benchmarks include The benchmarks include Blue Increase [chang Feng et al. 2002], Flowlet
Switching [Sinha et al. 2004], Sampling [Sivaraman et al. 2016], Marple flow [Narayana et al. 2017]
and RCP [Tai et al. 2008].

To answer RQ1, for each benchmark instance, we run CATSTAIL with A = A; and A = A,
respectively, and measure the end-to-end time.

To answer RQ2, after CATSTAIL yields an output 7, we compute its cost C# (7). If 7 has a
non-infinity cost, then we take the cost as the number of stages required to map 7~ on A, otherwise,
we conclude CATsTAIL fails to synthesize for A using the original input program.

To answer RQ3, we developed the 3 sets of rewrite rules from scratch. We elaborate on our
experience when developing the rewrite rules for CATSTAIL later in this section.

5.2 Speed of resource synthesis

We evaluate CATSTAIL on 8 benchmarks from CaT [Gao et al. 2023] and compare the resource
synthesis time with CaT. [Gao et al. 2023] The target switches are Intel Tofino ALUs and Domino
Banzai ALUs. For both targets, we use the same set of general-purpose program transformation
rules and table transformation rules. We have 1 set of target-dependent synthesis rules for Tofino
switches bit 2 sets for Domino switches. For Domino switches, this is because computations
supported by Domino ALUs are defined in several different grammars. For each grammar, we have
a corresponding synthesis rule. A set of target-dependent synthesis rules is Full, which means we
aggregate all the synthesis rules of Domino switches (§ 8.2) into a monolithic set of rewrite rules.
The other set Sk contains synthesis rules tuned for each benchmark to match the ALU grammar
used by SKETCH [Solar-Lezama 2008] in CaT [Gao et al. 2023] for fair comparisons. For example,
the Blue Increase benchmark in CaT [Gao et al. 2023] uses the grammar PRED-RAW, then Sk used
in the corresponding benchmark in CaTsTAIL also only contains the synthesis rule derived from
PRED-RAW.

We set a 5-second timeout for EqSat and measured the time to synthesize the 8 benchmarks. In
all the experiments, CATSTAIL is at least an order of magnitude faster than CaT [Gao et al. 2023] on
resource synthesis. For harder cases such as stateful firewall, the synthesis speed is improved by

!https://github.com/AD1024/CatsTail

, Vol. 1, No. 1, Article . Publication date: December 2023.

https://github.com/AD1024/CatsTail/blob/main/src/language.rs
https://github.com/AD1024/CatsTail/blob/main/src/rewrites
https://github.com/AD1024/CatsTail/blob/main/src/extractors.rs
https://github.com/AD1024/CatsTail

12 Deyuan Mike He and Yinwei Dai

o7 Banzai ALU synthesis time comparison (ms)

1.E+06
1.E+05

1.E+04

1.E+03
1.E+02
1.E+01
1.E+00

Sampling Blue Increase Flowlet Marple TCP Marple new Stateful FW Learn Filter
switching NMO flow
CatsTail-Full m CatsTail-Sk ™ CaT
(a) Synthesis time comparison for Domino (Banzai) ALUs. CatsTail-Full uses all the
synthesis rules and CatsTail-Sk only uses rules derived from ALU grammars that were
used by CaT [Gao et al. 2023] for the specific benchmarks.

Tofino synthesis time comparison (ms)
1.00E+05

1.00E+04
1.00E+03
1.00E+02
1.00E+01
1.00E+00

Sampling Blue Increase Flowlet switching Marple TCP NMO Marple new flow
CatsTail mCaT

(b) Synthesis time comparison for Intel Tofino ALUs

Fig. 8. Synthesis time comparisons

about 3 orders of magnitude. These preliminary results show good evidence to use CaTsTaiL for
resource synthesis given the fast synthesis speed.

5.3 Number of stages required after resource synthesis

To evaluate whether the greedy extraction gives good approximations to the optimal, we compare
the number of stages the synthesized program from CatsTaL and CaT [Gao et al. 2023] takes. The
number of required stages for an extracted candidate is computed using the cost function discussed
in § 3.4. The results are shown in Table 1. When taking Intel Tofino as the target switch, CATsTAIL
is able to synthesize programs with stage usage as good as the synthesized program from CaT [Gao
et al. 2023]. For Domino switches, CATSTAIL can find better candidates thanks to the composition
of the general-purpose and table transformation rules. Therefore, even though CaTsTaIL employs a
greedy heuristic to extract the candidate program, the synthesized results are good approximations
to optimal solutions. In subsequent work, we will investigate which set of rewrite rules enabled
CATSTAIL to discover a program that has a smaller stage usage than CaT [Gao et al. 2023].

, Vol. 1, No. 1, Article . Publication date: December 2023.

CATSTAIL 13

Table 1. Comparison of the number of stages required to map the synthesized program given by CATsTaIL
and CaT [Gao et al. 2023] to Intel Tofino switches and Domino switches.

Benchmark # Stages on Domino | # Stages on Tofino
CarsTalL CaT CatsTaIL CaT

RCP 2 2 1 1
Sampling 2 2 1 1
Blue Increase 3 4 1 1
Flowlet Switching 3 3 2 2
Marple Flow NMO 2 3 2 2
Marple New Flow 2 2 1 1
Stateful Firewall 4 4 - -
Learn Filter 3 3 - -

5.4 Experience of developing the rewrite rules

We experienced synthesis failure during the development of the general-purpose and table trans-
formation rules. The reason that CATSTAIL could not synthesize a mappable computation for a
target switch is because of the incompleteness of these rewrite rules. Notice that computations
that are mapped to the target switch are only instantiated by the target-dependent synthesis rules,
which are derived from some ALU grammars. Moreover, the triggering of a rewrite rule is based on
syntactic matches on the left-hand-side pattern. Therefore, the synthesis rules are not triggered
until there is some term ¢ represented in the e-graph that matches exactly the structure of mappable
computations generated by the ALU grammar. If a computation ¢’ is semantically equivalent to ¢
but in a different structure, the rewrite rule will not be triggered. Thus, the goal of designing the
general-purpose and table transformation rules is to transform ¢’ into ¢ by some combinations of
the rules. It is hard to show and guarantee that these sets of rewrite rules are complete, meaning
that they can discover all the candidates that are semantically equivalent to the input program.
However, we have a methodology to improve the completeness when we encounter synthesis
failures.

We first augment the extractor to report the unsupported computations in the extracted candidate
program. When CAtsTaIL fails to synthesize a program, we check the report given by the extractor
and inspect whether the structure of the term is equivalent to some computations that can be
recognized by the ALU grammar. If so, we specify several rules to alter the sub-structures of the
unsupported computation and turn them into the syntactic form that can be recognized by the
ALU grammar. In future work, we would like to explore how the completeness of the rewrite rules
can be automatically improved when a synthesis failure happens.

6 CONCLUSION

In this report, we introduce CATSTAIL, an equality saturation-based resource synthesizer for packet
programs. CATsTAIL utilizes both the semantics and the structure of input programs and leverages
equality saturation to explore the space of equivalent program representations using 3 sets of rewrite
rules: general-purpose program transformations, table transformations, and target-dependent
synthesis rules. Moreover, we proved the completeness of the target-dependent synthesis rules,
which guarantees that mappable computations will eventually be mapped to some computations
on the target switches. The evaluation shows significant performance improvement over the
SKETCH [Solar-Lezama 2008] synthesizer, which is a good sign of replacing SKETCH with CATsTAIL
in the packet program compilation pipeline. The greedy heuristic employed by CATSTAIL to select a

, Vol. 1, No. 1, Article . Publication date: December 2023.

14 Deyuan Mike He and Yinwei Dai

candidate program for output gives good approximations: the stage usage of programs synthesized
by CATsTAIL is also at least as good as results given by CaT [Gao et al. 2023]. In the future, we would
like to explore how to improve the completeness of the rewrite rules and integrate CATSTAIL into a
part of an end-to-end packet program compilation flow. We would also like to explore automatically
computing the target-dependent synthesis rules from ALU grammars.

, Vol. 1, No. 1, Article . Publication date: December 2023.

CATSTAIL 15

REFERENCES

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Noétzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I (Lecture Notes in Computer Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer, 415-442. https:
//doi.org/10.1007/978-3-030-99524-9_24

Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and program development: Coq’Art: the calculus of inductive
constructions. Springer Science & Business Media.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin
Vahdat, George Varghese, and David Walker. 2014. P4: Programming Protocol-Independent Packet Processors. SIGCOMM
Comput. Commun. Rev. 44, 3 (jul 2014), 87-95. https://doi.org/10.1145/2656877.2656890

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando Mujica, and Mark
Horowitz. 2013. Forwarding Metamorphosis: Fast Programmable Match-Action Processing in Hardware for SDN.
SIGCOMM Comput. Commun. Rev. 43, 4 (aug 2013), 99-110. https://doi.org/10.1145/2534169.2486011

Wu chang Feng, K.G. Shin, D.D. Kandlur, and D. Saha. 2002. The BLUE active queue management algorithms. IEEE/ACM
Transactions on Networking 10, 4 (2002), 513-528. https://doi.org/10.1109/TNET.2002.801399

Cliff Click and Michael Paleczny. 1995. A Simple Graph-Based Intermediate Representation. SIGPLAN Not. 30, 3 (mar 1995),
35-49. https://doi.org/10.1145/202530.202534

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (Los Angeles, California) (POPL ’77). Association for Computing Machinery, New York, NY,
USA, 238-252. https://doi.org/10.1145/512950.512973

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS 08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337-340.

Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming Zhang, and
Minlan Yu. 2020. Lyra: A Cross-Platform Language and Compiler for Data Plane Programming on Heterogeneous ASICs.
In Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication (Virtual Event, USA) (SSIGCOMM °20). Association
for Computing Machinery, New York, NY, USA, 435-450. https://doi.org/10.1145/3387514.3405879

Xiangyu Gao, Divya Raghunathan, Ruijie Fang, Tao Wang, Xiaotong Zhu, Anirudh Sivaraman, Srinivas Narayana, and Aarti
Gupta. 2023. CaT: A Solver-Aided Compiler for Packet-Processing Pipelines. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3 (Vancouver, BC, Canada)
(ASPLOS 2023). Association for Computing Machinery, New York, NY, USA, 72-88. https://doi.org/10.1145/3582016.
3582036

Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language. In Automated
Deduction — CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings.
Springer-Verlag, Berlin, Heidelberg, 625-635. https://doi.org/10.1007/978-3-030-79876-5_37

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar
Jeyakumar, and Changhoon Kim. 2017. Language-Directed Hardware Design for Network Performance Monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on Data Communication (Los Angeles, CA, USA) (SIGCOMM
’17). Association for Computing Machinery, New York, NY, USA, 85-98. https://doi.org/10.1145/3098822.3098829

Greg Nelson and Derek C. Oppen. 1980. Fast Decision Procedures Based on Congruence Closure. J. ACM 27, 2 (apr 1980),
356-364. https://doi.org/10.1145/322186.322198

Shan Sinha, Srikanth Kandula, and Dina Katabi. 2004. Harnessing TCP ’ s Burstiness with Flowlet Switching. https:
//api.semanticscholar.org/CorpusID:9358977

Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh, Hari Balakrishnan, George
Varghese, Nick McKeown, and Steve Licking. 2016. Packet Transactions: High-Level Programming for Line-Rate Switches.
In Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil) (SSGCOMM ’16). Association for Computing
Machinery, New York, NY, USA, 15-28. https://doi.org/10.1145/2934872.2934900

Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation. USA. Advisor(s) Bodik, Rastislav.
AAI3353225.

C.-H. Tai, J. Zhu, and N. Dukkipati. 2008. Making Large Scale Deployment of RCP Practical for Real Networks. In IEEE
INFOCOM 2008 - The 27th Conference on Computer Communications. 2180-2188. https://doi.org/10.1109/INFOCOM.2008.
285

, Vol. 1, No. 1, Article . Publication date: December 2023.

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2534169.2486011
https://doi.org/10.1109/TNET.2002.801399
https://doi.org/10.1145/202530.202534
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/3387514.3405879
https://doi.org/10.1145/3582016.3582036
https://doi.org/10.1145/3582016.3582036
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1145/3098822.3098829
https://doi.org/10.1145/322186.322198
https://api.semanticscholar.org/CorpusID:9358977
https://api.semanticscholar.org/CorpusID:9358977
https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1109/INFOCOM.2008.285
https://doi.org/10.1109/INFOCOM.2008.285

16 Deyuan Mike He and Yinwei Dai

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Saturation: a New Approach to Optimization.
In POPL °09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages
(Savannah, GA, USA). ACM, New York, NY, USA, 264-276. https://doi.org/10.1145/1480881.1480915

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. egg:
Fast and extensible equality saturation. Proceedings of the ACM on Programming Languages 5, POPL (jan 2021), 1-29.
https://doi.org/10.1145/3434304

, Vol. 1, No. 1, Article . Publication date: December 2023.

https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/3434304

CATSTAIL 17

7 APPENDIX - SYMEX ALGORITHM FOR ITE TRANSFORMATION
Input P, «, T, 2 > Program, path condition, context, and path condition mapping
Returns (I”,%’) > Updated variable context and path conditions after running #
1: procedure SYMEXEC(P, k, T, 3)
2: if P = Seq(sy, s;) then
3: (I5,, Zs,) < SYMEXEC(sy, , I, X)
4: return SYMEXEC(sy, [§,, 25,)
5: else if P = Assign(v, e) then
6: return UrDATECTX(T, 3, 0, €, k)
7: else if P = If(c,s1,52) then
8: (T, Zs,) «<—SYMEXEC(s1, k Ac, T, %)
9: (Ts,, Bs,) «—SYMEXEC(s2, k A (—¢), T, X)
10: return MERGE(T', 2, I, 2, Iy, 2, K)
11: end if
12: end procedure
13:
14: procedure susst([, 2, e) > Substitute variables in e with values in T’
15: for v € dom(T) do
16: K «— 2(v)
17: e «— [ite(x,T(v),v)/v]e
18: end for
19: return e
20: end procedure
21:
22: procedure UpDATECTX(T, %, 9, e, k)
23: e* «—suBsT(T, 3, e)
24: if 3o — ¢’ €T then
25: Ko «— 2(v)
26: return T\ {v > '} U{o > e*}, 2\ {v > x} U {v > «})
27: else
28: return (TU {o > e*},2 U {v > «})
29: end if
30: end procedure
31:
32: procedure MERGE(L', 2, I, 24, I3, 2, k) > Union of contexts of branches
33: '«
34; S e— 02
35: I «— dom(Iy) Ndom(I})
36: forov € 7 do > Variables modified in both branch
37: Kt «— 21(0)
38: K1 «— 25(v)
39: if x+ # x, then
40: ™ «T*U{v > ite(xr,T1(0), 13(0))}
41: S —3I*U{o k}
42: else > Variables remain unchanged in both branches
43: I'*«—T*U{o—T(v)}
44: > —3*U{o 2(v)}

, Vol. 1, No. 1, Article . Publication date: December 2023.

_ =
= O 0 0 N U R W=

=
w N

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31

32
33

18

45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

end if
end for
for v € (dom(I7) \ 7) U (dom(I) \ I) do
if v € dom(I) then
e* — ite(21(0),I1(v), T'(v))
else
e* ite(22(v), 2 (v), T'(v))
end if
I'* «T*U{o e*}
X* — 33U {v ok}
end for
return (T*,3*)

: end procedure

Deyuan Mike He and Yinwei Dai

8 APPENDIX - REWRITE RULES

8.1

General-purpose transformations

#[allow(dead_code)]
pub fn alg_simpl() -> Vec<RW> {
vec![
rewrite! (
rewrite! (; =>
rewrite! (;
rewrite! (; =>
rewrite! (; =>
rewrite! (; =>),
rewrite! (; =>),
rewrite! (; =>
rewrite! (;
rewrite! (;
),
rewrite! (; =>
parse().unwrap(), 32)),
rewrite! (; =>),
rewrite! (; =>
rewrite! (; =>
rewrite! (; =>
if is_integer(.parse().unwrap())),

#[allow(dead_code)]
pub fn predicate_rewrites() -> Vec<RW> {
vec![
rewrite! (;
rewrite! (;
rewrite! (; =>
rewrite! (;

rewrite! (H
rewrite! (; =>

rewrite! (;
rewrite! (; =>

, Vol. 1, No. 1, Article . Publication date: December 2023.

if is_greater_eq(

),

34

35

36

37

38

39

40
41
42
43

44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

1

CATSTAIL

19
rewrite! ("or-assoc"; "(lor_?x_(lor_?y_?z))" => "(lor_(lor_?x_.?7y).7z)")
— ’
rewrite! ("demorgan-and"; "(lnot_(land_?x_.?y))" => "(lor_(lnot_?x)._(
— lnot_?y))"),
rewrite! ("demorgan-or"; "(lnot_(lor_?x_.?y))" => "(land_(lnot_?x)._(lnot
= .?yN"),
rewrite! ("demorgan-converse-and"; "(land_(lnot_?x)_(lnot_?y))" => "(
— lnot_(lor_?x.?y))"),
rewrite! ("demorgan-converse-or"; "(lor_(lnot_?x)_(lnot_?y))" => "(lnot
— _(land_?x.?y))"),
// rewrite! ("ite-collapse"; "(ite ?c1 ?t3 (ite ?c2 ?2t1 ?2t2))" => "(ite
= ?c1 ?2t3 ?t1)"), // iff cl1 <=> not c2
rewrite! ("ite-true’; "(ite_true.?t1.2t2)" => "2¢1"),
rewrite! ("ite-false”; "(ite_false_ 7t1_72t2)" => "72t2"),
rewrite! ("ite-same”; "(ite_?c_7t_?2t)" => "?2t"),
rewrite! ("ite-combine"; "(ite_?cl_(ite_?c2_?b1.?d)_?d)" => "(ite_(land
— _.?c1.?c2).?b1.?2d)"),
rewrite! ("ite-intro"; "7t" => "(ite_true_?t_7t)"
if is_integer("?t".parse().unwrap())),
rewrite! ("trivial-comp"; "true" => "(=_0_0)"),
rewrite! ("true-not-false"; "(lnot_false)" => "true"),
rewrite! ("false-not-true"; "(lnot_true)" => "false"),
rewrite! ("not-not"; "(lnot_(lnot_?x))" => "72x"),
rewrite! ("ite-reversed-cond"; "(ite_.?c.?b1_.?b2)" => "(ite_(lnot_.?c).?

— b2.7?b1)"),

pub fn rel_comp_rewrites() -> Vec<RW> {

vec! [

rewrite! ("not-eqg-neq"; "(l=_7x_7y)" => "(lnot_(=_7x_7y))"),
rewrite! ("neg-not-eq"; "(lnot_(=_7?x_?y))" => "(!=_7x.2y)"),
rewrite! ("not-neg-neg'; "(lnot_ (!=_72x_2y))" => "(=_7x_7y)"),

rewrite! ("not-lt-ge"; "(lnot_ (<_7x_7y))" => "(>=_72x_72y)"),
rewrite! ("gt-1t"; "(>_7x_?2y)" => "(<_7y_.7x)"),
rewrite! ("lt-gt"; "(<_7x_ 7y)" o => (> 7y 0",
rewrite! ("lt-to-zero-cmp'; "(<_ 7x_7y)" o=> (< 0. (-_7x_7y))"),
rewrite! ("lt-comp-1t-0"; "(<_7x_7y)" => "(<_ (-_7x_7y)_0)"),
rewrite! ("gt-comp-gt-0"; "(>_7x_?7y)" => "(<_0_(-_7x_.?y))"),
rewrite! ("lt-comp-sub"™; "(<_(-_7x_7y)_2z)" => "(>_ 72y (-_7x_.?2z))"),
rewrite! ("lt-to-zero-check"; "(<_?x_7y)" => "(<_(-_7x_7%y)_0)"
if is_integer ("7?x".parse().unwrap())
if is_integer("?y".parse().unwrap())),
rewrite! ("eq-to-zero-check"; "(=_7x_2y)" => "(l=_0_(-_7x_2y))"
if is_integer ("7?x".parse().unwrap())
if is_integer("?y".parse().unwrap())),
rewrite! ("neg-to-zero-check"; "(!=_.?2x_.2y)" => "(!=_(-_?7x_?y)_0)"
if is_integer("7x".parse().unwrap())
if is_integer("?y".parse().unwrap())),

8.2 Target-dependent Synthesis Rules
8.3 Tofino Synthesis Rules

pub mod stateless {

, Vol. 1, No. 1, Article . Publication date: December 2023.

20 Deyuan Mike He and Yinwei Dai

#[allow(dead_code)]

pub fn arith_to_alu() -> Vec<RW> {

g W

N o

10
11

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

vec! [
rewrite! (; => { AluApplier::new(
, vec![, 1 3
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
rewrite! (; => { AluApplier::new(
, vec![, 1D
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
rewrite! (; => { AluApplier::new(
, , vecl![, 1D
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
rewrite! (; => { AluApplier::new(
, , vec![, DI
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
]
}
pub fn cmp_to_rel() -> Vec<RW> {
vec! [
rewrite! (; =>
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
rewrite! (; =>
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
rewrite! (; =>
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
rewrite! (; =>
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
rewrite! (; =>
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
rewrite! (; =>
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
]
3
}
pub mod stateful {
pub fn conditional_assignments () -> Vec<RW> {

, Vol. 1, No

struct TofinoStatefulAluApplier {

alu_type: &'static str,
alu_op: &'static str,
operands: Vec<Var>,
table_id: Var,

}

impl TofinoStatefulAluApplier {

fn new(

1, Article . Publication date: December 2023.

55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100

102
103
104
105
106
107

CATSTAIL

alu_type: &'static str,
alu_op: &'static str,
table_id: &'static str,
operands: Vec<&'static str>,
) -> Self {
Self {
alu_type,
alu_op,
table_id: table_id.parse().unwrap(),
operands: operands.into_iter().map(|s]| s.parse().
collect(),

}
impl Applier<Mio, MioAnalysis> for TofinoStatefulAluApplier {
fn apply_one(
&self,
egraph: &mut egg::EGraph<Mio, MioAnalysis>,
eclass: Id,
subst: &Subst,
_searcher_ast: Option<&egg::PatternAst<Mio>>,
_rule_name: egg::Symbol,
) -> Vec<Id> {
let elaborations = MioAnalysis::elaborations(egraph,
O
assert! (
elaborations.len() <= 1,

)
let elab_var = if elaborations.len() == 0 {
.to_string ()
} else {
elaborations.iter().cloned().next().unwrap()
3

let alu_op_id = egraph.add(if self.alu_type ==
Mio::ArithAluOps(self.alu_op.parse().unwrap())

} else {
Mio::RelAluOps(self.alu_op.parse().unwrap())
s
let operands = self.operands.iter().map(|v| subst[xv]
Vec<_>>();

let elab_id = egraph.add(Mio::Symbol(elab_var.clone()
let salu_id = egraph.add(Mio::SAlu(
vec![alu_op_id, elab_id]
.into_iter ()
.chain(operands.iter().cloned())
.collect(),
));

let elaborator_id =

egraph.add(Mio::Elaborate([subst[self.table_id],
salu_id]));
let f = egraph.union(elaborator_id, eclass);
if £ {
vec![eclass, elaborator_id]
} else {
vec![]
3

21

unwrap()).

eclass).clone

).collect::<

D)

elab_id,

, Vol. 1, No. 1, Article . Publication date: December 2023.

108
109
110
111
112

113
114
115
116
117
118

10
11
12
13
14
15
16
17
18

19
20
21
22

23
24
25
26

27
28
29
30

31
32
33

22 Deyuan Mike He and Yinwei Dai

}
}
vec![rewrite! (;
=>
{ TofinoStatefulAluApplier::new(s s , vec!
L , , IDA:
if is_n_depth_mapped(.parse().unwrap(), 2, Some(false))
if is_n_depth_mapped(.parse().unwrap(), 1, Some(false))
if is_n_depth_mapped(.parse().unwrap(), 1, Some(false))

)]

8.4 Domino (Banzai ALU) Synthesis Rules

pub mod stateless {
pub fn arith_to_alu() -> Vec<RW> {
// https://github.com/CaT-mindepth/minDepthCompiler/blob/weighted-grammar -
parallel-final/src/grammars/stateless_domino/stateless_new. sk
fn neq_0_check_match(x: Var) -> impl Fn(&mut EGraph<Mio, MioAnalysis>, Id,
&Subst) -> bool {
move |egraph, _, subst| {
// println! ("neq_0@_check_match: {3}", MioAnalysis::
extract_smallest_expr(egraph, subst[x]));
if MioAnalysis::get_symbol(egraph, subst[x]).is_some() {
return true;
3
let pattern = ;
let pattern = pattern.parse::<Pattern<Mio>>().unwrap();
egraph.rebuild();
pattern.search_eclass(egraph, subst[x]).is_some()

}
}
vec![
rewrite! (;
=> { AluApplier::new(, , vec![
) DI
if is_mapped(.parse().unwrap(), Some(false))
if is_mapped(.parse().unwrap(), Some(false))),
rewrite! (;
=> { AluApplier::new() , vecl![
) D3
if is_mapped(.parse().unwrap(), Some(false))
if is_mapped(.parse().unwrap(), Some(false))),
rewrite! (;
=> { AluApplier::new(, , vec![s
DI
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
rewrite! (;
=> { AluApplier::new(s , vec![s
DI
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),

rewrite! (;

, Vol. 1, No. 1, Article . Publication date: December 2023.

34

35
36
37
38

39
40
41
42

43
44
45

46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75

76

77
78
79
80
81
82

CATSTAIL 23

=> { AluApplier::new(, , vec![s
DI
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
rewrite! (;
=> { AluApplier::new(, , vec![s
DI
if is_mapped(.parse().unwrap(), None)
if is_mapped(.parse().unwrap(), None)),
// rewrite! ("domino-ite-0";
// "(ite ?c ?x ?y)" => { AluApplier::new("arith-alu", "alu-ite",
vec! ["?2c", "2x", "?y"1) 3}
// if neq_@_check_match("?c".parse().unwrap())),
rewrite! (;
=> { AluApplier::new(, , vec![s
D3
if neq_@_check_match(.parse().unwrap())
if neq_0_check_match(.parse().unwrap())),
rewrite! (;
=> { AluApplier::new(, , vec![
) DI
if neq_0_check_match(.parse().unwrap())
if neq_@_check_match(.parse().unwrap())),

#[allow(dead_code)]
pub mod stateful {
fn check_relops(
v: Var,
operators: Vec<&'static str>,
) -> impl Fn(&mut EGraph<Mio, MioAnalysis>, Id, &Subst) -> bool {
move |egraph, _, subst| {
let vid = subst[v];
assert_eq! (egraph[vid].nodes.len(), 1);
let operators = operators
Liter ()
.map(|lop| Mio::RelAluOps(op.parse().unwrap()))
.collect::<Vec<Mio>>();
return operators.iter().any(|x| x.eq(&egraph[vid].nodes[0]));

fn check_arith_alu(v: Var) -> impl Fn(&mut EGraph<Mio, MioAnalysis>, Id, &
Subst) -> bool {

move |egraph, _, subst| {
let add_pattern = .parse::<Pattern<Mio>>().
unwrap () ;
let sub_pattern = .parse::<Pattern<Mio>>().
unwrap () ;

let vid = subst[v];

if MioAnalysis::has_leaf(egraph, vid) {
// constant / variable is ok
return true;

}
egraph.rebuild();

, Vol. 1, No. 1, Article . Publication date: December 2023.

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123
124
125
126
127
128
129
130
131
132

133
134
135
136

24

if let Some(matches) =
.search_eclass (egraph,

add_pattern
vid)

Deyuan Mike He and Yinwei Dai

vid))

{

subst[var_x1)

subst[var_yl)

.or(sub_pattern.search_eclass(egraph,
{
// Check whether ?x and ?y are leaves
let var_x = .parse().unwrap();
let var_y = .parse().unwrap();
return matches.substs.iter().any(]|subst]
MioAnalysis::has_leaf (egraph,
&& MioAnalysis::has_leaf (egraph,
s
} else {
return false;
3

pub fn bool_alu_rewrites ()
vec![
rewrite! (

-> Vec<RW> {

=>
if constains_leaf(.parse().unwrap())
if constains_leaf (.parse().unwrap())),
rewrite! (;
=>
if constains_leaf (.parse().unwrap())
if constains_leaf(.parse().unwrap())),
rewrite! (;
=>
if constains_leaf (.parse().unwrap())),
rewrite! (;
=>
if constains_leaf(.parse().unwrap())
if constains_leaf (.parse().unwrap())),
rewrite! (;
=>
if constains_leaf (.parse().unwrap())
if constains_leaf (.parse().unwrap())),
rewrite! (;
=>
if constains_leaf (.parse() .unwrap())
if constains_leaf (.parse().unwrap())),
rewrite! (;
=>
if constains_leaf (.parse() .unwrap())
if constains_leaf (.parse().unwrap())),
]
}
pub fn global_or_@(v: Var) -> impl Fn(&mut EGraph<Mio, MioAnalysis>, Id, &
Subst) -> bool {
move |egraph, _, subst]| {
let vid = subst[v];
if let Some(c) = MioAnalysis::get_constant(egraph, vid) {
return ¢ == Constant::Int(Q) || == Constant::Bool(false);

, Vol. 1, No. 1, Article . Publication date: December 2023.

137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

188

189

CATSTAIL 25

}
if let Some(sym) = MioAnalysis::get_symbol (egraph, vid) {
return sym.starts_with();
} else {
return false;
}
}
3
pub fn non_global(v: Var) -> impl Fn(&mut EGraph<Mio, MioAnalysis>, Id, &Subst
) -> bool {
move |egraph, _, subst| {
let vid = subst[v];
return MioAnalysis::stateful_read_count(egraph, vid) == @
&& !MioAnalysis::has_stateful_elaboration(egraph, vid);
}
3
pub fn same_if_is_var(
vl: Var,
v2: Var,
) -> impl Fn(&mut EGraph<Mio, MioAnalysis>, Id, &Subst) -> bool {
move |egraph, _, subst]| {

let vidl = subst[vi1];

let vid2 = subst[v2];

if let (Some(vi_sym), Some(v2_sym)) (
MioAnalysis::get_symbol (egraph, vidl),
MioAnalysis::get_symbol (egraph, vid2),

) A
if vi_sym.starts_with() && v2_sym.starts_with()
{
return vi_sym == v2_sym;
} else {
return true;
¥
} else {
return true;
}

pub fn check_read_limit(
vars: Vec<&'static str>,
phv_field_limit: usize,
global_reg_limit: usize,
) -> impl Fn(&mut EGraph<Mio, MioAnalysis>, Id, &Subst) -> bool {
move |egraph, _, subst| {
let mut local_read = HashSet::new();
let mut global_read = HashSet::new();
for v in vars.iter() {
let vid = subst[v.parse().unwrap()];

let read_set = MioAnalysis::read_set(egraph, vid);

global_read.extend(read_set.iter().filter (|x| x.starts_with(
1))

local_read.extend(read_set.iter().filter (|x| !x.starts_with(
1))

, Vol. 1, No. 1, Article . Publication date: December 2023.

190

191
192
193
194
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

26 Deyuan Mike He and Yinwei Dai

return local_read.len() <= phv_field_limit && global_read.len() <=
global_reg_limit;

pub fn if_else_raw() -> Vec<RW> {

// https://github.com/CaT-mindepth/minDepthCompiler/blob/weighted-grammar -

parallel-final/src/grammars/stateful_domino/if_else_raw. sk
struct IfElseApplier {
op: Var,

r: Var,
rhs: Var,
Xx: Var,
y: Var,
z: Var,
w: Var,

}
impl Applier<Mio, MioAnalysis> for IfElseApplier {
fn apply_one(
&self,
egraph: &mut EGraph<Mio, MioAnalysis>,
eclass: Id,
subst: &Subst,
searcher_ast: Option<&egg::PatternAst<Mio>>,
rule_name: egg::Symbol,
) -> Vec<Id> {
let elaborations = MioAnalysis::elaborations(egraph, eclass);
let evar = if elaborations.len() == 0 {
.to_string ()
} else {
elaborations.iter().next().unwrap().clone()
3
let pattern = format! (

evar, self.op, self.r, self.rhs, self.z, self.x, self.w, self.

y
N
return pattern.parse::<Pattern<Mio>>().unwrap().apply_one(
egraph,
eclass,
subst,
searcher_ast,
rule_name,
)

}

vec![rewrite! (;

=> { IfElseApplier {
op: .parse().unwrap(),
r: .parse() .unwrap(),

, Vol. 1, No. 1, Article . Publication date: December 2023.

CATSTAIL 27

244 rhs: .parse().unwrap(),

245 X: .parse() .unwrap(),

246 y: .parse().unwrap(),

247 z: .parse() .unwrap(),

248 W .parse().unwrap(),

249 T3

250 if check_relops(.parse().unwrap(), vec![s s

) 1D

251 // if global_or_o0("?r".parse().unwrap())

252 // if global_or_@("?z".parse().unwrap())

253 // if global_or_o0("?w".parse().unwrap())

254 if same_if_is_var(.parse().unwrap(), .parse().unwrap())

255 if same_if_is_var(.parse().unwrap(), .parse().unwrap())

256 if same_if_is_var(.parse() .unwrap(), .parse() .unwrap())

257 if none_global(.parse().unwrap())

258 if constains_leaf(.parse() .unwrap())

259 if constains_leaf (.parse().unwrap())

260 if constains_leaf(.parse().unwrap()))]

261 3}

262

263 pub fn nested_ifs() -> Vec<RW> {

264 // https://github.com/CaT-mindepth/minDepthCompiler/blob/weighted-grammar -
parallel-final/src/grammars/stateful_domino/nested_ifs.sk

265 struct NestedIfsApplier;

266 impl Applier<Mio, MioAnalysis> for NestedIfsApplier {

267 fn apply_one(

268 &self,

269 egraph: &mut EGraph<Mio, MioAnalysis>,

270 eclass: Id,

271 subst: &Subst,

272 searcher_ast: Option<&egg::PatternAst<Mio>>,

273 rule_name: egg::Symbol,

274) -> Vec<Id> {

275 // check conditions

276 let stateless_read_violation =

277 |v: Id| MioAnalysis::stateless_read_count(egraph, v) > 1;

278 let c1 = subst[.parse().unwrap()1;

279 let c2 = subst[.parse().unwrap()1;

280 let c3 = subst[.parse().unwrap()1;

281 if MioAnalysis::stateful_read_count(egraph, c1)

282 + MioAnalysis::stateful_read_count(egraph, c2)

283 + MioAnalysis::stateful_read_count(egraph, c3)

284 > 1

285 {

286 return vec![];

287 }

288 let bl = subst[.parse() .unwrap()1;

289 let b2 = subst[.parse().unwrap()1;

290 let b3 = subst[.parse() .unwrap()1;

291 let b4 = subst[.parse().unwrap()1;

292 if MioAnalysis::stateful_read_count(egraph, b1)

293 + MioAnalysis::stateful_read_count(egraph, b2)

294 + MioAnalysis::stateful_read_count(egraph, b3)

295 + MioAnalysis::stateful_read_count(egraph, b4)

296 > 1

297 {

298 return vec![];

, Vol. 1, No. 1, Article . Publication date: December 2023.

28 Deyuan Mike He and Yinwei Dai

299 3}

300 if [b1, b2, b3, b4, cl1, c2, c3]

301 .into_iter ()

302 .any(stateless_read_violation)

303 {

304 return vec![];

305 3}

306 let elaborations = MioAnalysis::elaborations(egraph, eclass);
307 let evar = if elaborations.len() == 0 {

308 .to_string()

309 } else {

310 format! (, elaborations.iter().next().unwrap().clone())
311 };

312 let pattern = format! (

313
314
315
316
317
318
319
320
321
322
323
324
325 ,

326 evar,

327);

328 return pattern.parse::<Pattern<Mio>>().unwrap().apply_one(
329 egraph,

330 eclass,

331 subst,

332 searcher_ast,

333 rule_name,

334)

336 }

337 vec![rewrite! (;
338
339
340
341
342
343
344
345
346
347
348
349
350 => { NestedIfsApplier {} }

351 if is_n_depth_mapped(.parse().unwrap(), 1, None)
352 if is_n_depth_mapped(.parse().unwrap(), 1, None)
353 if is_n_depth_mapped(.parse().unwrap(), 1, None)
354 if is_n_depth_mapped(.parse().unwrap(), 1, None)
355 if is_n_depth_mapped(.parse().unwrap(), 1, None)

, Vol. 1, No. 1, Article . Publication date: December 2023.

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

CATSTAIL 29

if is_n_depth_mapped(.parse().unwrap(), 1, None)
if is_n_depth_mapped(.parse().unwrap(), 1, None)
)]

pub fn pred_raw() -> Vec<RW> {
struct PredRawApplier {
op: Var,
r: Var,
rhs: Var,
r1: Var,
x: Var,
g: Var,
}
impl Applier<Mio, MioAnalysis> for PredRawApplier {
fn apply_one(
&self,
egraph: &mut EGraph<Mio, MioAnalysis>,
eclass: Id,
subst: &Subst,
searcher_ast: Option<&egg::PatternAst<Mio>>,
rule_name: egg::Symbol,
) -> Vec<Id> {
let elaborations = MioAnalysis::elaborations(egraph, eclass);
let evar = if elaborations.len() == 0 {
.to_string()
} else {
elaborations.iter().next().unwrap().clone()
}
let pattern = format! (

)

evar, self.op, self.r, self.rhs, self.r1, self.x

)
return pattern.parse::<Pattern<Mio>>().unwrap().apply_one(
egraph,
eclass,
subst,
searcher_ast,
rule_name,
N

3

vec![rewrite! (;

=> { PredRawApplier {

op: .parse() .unwrap(),
r: .parse().unwrap(),
rhs: .parse() .unwrap(),
ri: .parse() .unwrap(),
X: .parse() .unwrap(),

, Vol. 1, No. 1, Article . Publication date: December 2023.

413
414
415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

441
442

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

461
462
463
464
465

30

g: .parse().
3}

check_relops (

global_or_o(
global_or_o(
global_or_o(
same_if_is_var(
same_if_is_var(
same_if_is_var(

if
if
if
if
if
if

unwrap (),

.parse().unwrap(), vec![

D

.parse().unwrap())

.parse().unwrap())

.parse().unwrap())

.parse().unwrap(),
.parse().unwrap(),
.parse() .unwrap(),

Deyuan Mike He and Yinwei Dai

.parse().unwrap())
.parse().unwrap())

.parse().unwrap())

if
if

constains_leaf (
constains_leaf (

.parse().unwrap())
.parse () .unwrap()))1]

pub fn stateful_ite_simpl() -> Vec<RW> {
struct SAlulteSimplApplier {
comp: Var,
}
impl Applier<Mio,
fn apply_one(

MioAnalysis> for SAlulteSimplApplier {

&self,

egraph: &mut EGraph<Mio, MioAnalysis>,
eclass: Id,

subst: &Subst,

_searcher_ast: Option<&egg::PatternAst<Mio>>,
_rule_name: egg::Symbol,
) -> Vec<Id> {

let comp_id = subst[self.compl;

if let Ok((_op_name, args)) = MioAnalysis::decompose_alu_ops(
egraph, comp_id) {
let vid = subst[.parse() .unwrap()1;
if let Ok(op_id) = MioAnalysis::get_alu_op_id(egraph, comp_id)
{

let salu_id = egraph.add(Mio::SAlu(
vec![op_id, vid]
.into_iter ()
.chain(args.into_iter())
.collect(),
));
egraph.union(eclass,
return vec![salu_id];

salu_id);

} else {
vec![]
}
} else {
vec![]
3
}
3
vec! [
rewrite! (;
=> {
SAlulteSimplApplier {
comp: .parse() .unwrap()
3
.,

, Vol. 1, No. 1, Article . Publication date: December 2023.

466
467
468
469
470
471
472
473
474

CATSTAIL

31

rewrite! (H

SAlulteSimplApplier {
comp: .parse().unwrap()

b,

, Vol. 1, No. 1, Article . Publication date: December 2023.

	Abstract
	1 Introduction
	2 Background
	2.1 Equality Saturation
	2.2 the egg framework

	3 CatsTail Synthesizer
	3.1 Frontend Transformations
	3.2 Generic Table Representation: Mio IR
	3.3 Equality Saturation on Mio IR
	3.4 Extraction with Target-aware Cost Models

	4 Completeness of Rewrite Rules
	4.1 Completeness of Target-dependent synthesis rules
	4.2 Discussion

	5 Implementation and Evaluation
	5.1 Evaluation and Experiments Setup
	5.2 Speed of resource synthesis
	5.3 Number of stages required after resource synthesis
	5.4 Experience of developing the rewrite rules

	6 Conclusion
	References
	7 Appendix - SymEx algorithm for ITE transformation
	8 Appendix - Rewrite Rules
	8.1 General-purpose transformations
	8.2 Target-dependent Synthesis Rules
	8.3 Tofino Synthesis Rules
	8.4 Domino (Banzai ALU) Synthesis Rules

